Math, asked by Mister360, 3 months ago

Prove that √3 – √2 is irrational

Answers

Answered by kailashmannem
33

 \huge{\bf{\green{\mathfrak{Question:-}}}}

 \bullet{\mapsto} \: \sf Prove \: that \: \sqrt{3} \: - \: \sqrt{2} \: is \: irrational.

 \huge {\bf{\orange{\mathfrak{Answer:-}}}}

 \bullet{\leadsto} \: \sf \sqrt{3} \: - \: \sqrt{2}

 \bullet{\leadsto} \: \sf Let \: us \: assume \: that \: \sqrt{3} \: - \: \sqrt{2} \: is \: a \: rational \: number.

 \bullet{\leadsto} \: \textsf{Then,}

 \bullet{\leadsto} \: \sf \sqrt{3} \: - \: \sqrt{2} \: = \: \dfrac{a}{b} \: where \: ‘a’ \: and \: ‘b’ \: are \: co-primes \: and \: b \: \neq \: 0.

 \bullet{\leadsto} \: \textsf{Then,}

 \bullet{\leadsto} \: \sf \sqrt{3} \: = \: \dfrac{a}{b} \: + \: \sqrt{2}

 \bullet{\leadsto} \: \textsf{Squarring on both sides,}

 \bullet{\leadsto} \: \sf (\sqrt{3})^{2} \: = \: (\dfrac{a}{b} \: + \: \sqrt{2})^{2}

 \bullet{\leadsto} \: \sf 3 \: = \: \dfrac{a^{2}}{b^{2}} \: + \: 2 \: + \: 2.\dfrac{a}{b}.\sqrt{2}

 \bullet{\leadsto} \: \sf 3 \: - \: 2 \: = \: \dfrac{a^{2}}{b^{2}} \: + \: 2.\dfrac{a}{b}.\sqrt{2}

 \bullet{\leadsto} \: \sf 1 \: = \: \dfrac{a^{2}}{b^{2}} \: + \: 2.\dfrac{a}{b}.\sqrt{2}

 \bullet{\leadsto} \: \sf - \: 2.\dfrac{a}{b}.\sqrt{2} \: = \: \dfrac{a^{2}}{b^{2}} \: - \: 1

 \bullet{\leadsto} \: \sf \dfrac{ - \: 2a}{b}.\sqrt{2} \: = \: \dfrac{a^{2}}{b^{2}} \: - \: 1

 \bullet{\leadsto} \: \textsf{Taking LCM to the right side,}

 \bullet{\leadsto} \: \sf  \dfrac{- \: 2a}{b}.\sqrt{2} \: = \: \dfrac{a^{2} \: - \: b^{2}}{b^{2}}

 \bullet{\leadsto} \: \sf \sqrt{2} \: = \: \dfrac{a^{2} \: - \: b^{2}}{b^{2}} \: *  \: \dfrac{b}{- \: 2a}

 \bullet{\leadsto} \: \sf \sqrt{2} \: = \: \dfrac{a^{2} \: - \: b^{2}}{b^{2}} \: *  \: \dfrac{- \: b}{2a}

 \bullet{\leadsto} \: \sf \sqrt{2} \: = \: \dfrac{a^{2} \: - \: b^{2} \: * \: - \: b}{b^{2} \: *  2a}

 \bullet{\leadsto} \: \sf \sqrt{2} \: = \: \dfrac{(a^{2} \: - \: b^{2}) \: - \: b}{b^{2} \: *  2a}

 \bullet{\leadsto} \: \sf \sqrt{2} \: = \: \dfrac{(a^{2} \: - \: b^{2}) \: - \: 1}{b \: *  2a}

 \bullet{\leadsto} \: \sf \sqrt{2} \: = \: \dfrac{- \: a^{2} \: + \: b^{2}}{b \: * \: 2a}

 \bullet{\leadsto} \: \sf \sqrt{2} \: = \: \dfrac{b^{2} \: - \: a^{2}}{2ab}

 \bullet{\leadsto} \: \textsf{Here a and b are Integers.}

 \bullet{\leadsto} \: \boxed{\therefore{\sf \sqrt{2} \: = \: \dfrac{b^{2} \: - \: a^{2}}{2ab}}}

 \bullet{\leadsto} \: \sf But \: \sqrt{2} \: is \: not \: a \: rational \: number.

 \bullet{\leadsto} \: \sf This \: contradicts \: the \: fact \: that \: \sqrt{3} \: - \: \sqrt{2} \: is \: an \: rational \: number.

 \bullet{\leadsto} \: \textsf{This has arisen because of our assumption.}

 \bullet{\leadsto} \: \therefore{\textsf{Our assumption is false/wrong.}}

 \bullet{\mapsto} \: \boxed{\therefore{\sf \sqrt{3} \: - \: \sqrt{2} \: is \: an \: irrational \: number.}}

Answered by ItzMeMukku
20

\bold\pink{\fbox{\sf{Answer}}}

No Answer. Just check the solution.

\bold\pink{\fbox{\sf{Step\:-by-\:step \:explanation:}}}

\begin{gathered}\textsf{Let $\mathsf{\sqrt{3} - \sqrt{2}}$ be a rational number.}\\\\\sf{Then, \: \sqrt{3}-\sqrt{2} = \dfrac{p}{q}, \: \textsf{where p and q are integers, q $\sf{\ne}$ 0, and p and q are co-primes, ie,}}\\\\\sf{\textsf{ they have no common factor.}}\\\\\sf{\textsf{Squaring both sides in the above equation, we get}}\\\\\sf{\left( \sqrt{3}-\sqrt{2} \right) ^2 =  \left( \dfrac{p}{q} \right) ^2}\\\\\\\sf{\implies (\sqrt{3})^2 + \sqrt{2}^2 - 2(\sqrt{3})(\sqrt{2}) = \dfrac{p^2}{q^2}}\end{gathered}

\begin{gathered}\textsf{In the above equation, it is clear that LHS is an irrational number while RHS is a rational number.}\\\\\textsf{So, our supposition is wrong.}\\\\\textsf{Therefore the given number is an irrational number.}\end{gathered}

\sf\color{red}In \:the\: above \:equation,

\sf\color{red}it\: is\: clear\: that\: LHS\: is \:an \:irrational\: number\: while\: RHS\: is \:a\: rational \:number.</p><p>

\sf\color{red}So,\: our\: supposition\: is \:wrong.

\sf\color{red}Therefore\: the/: given \:number \:is\: an\: irrational\: number.

Thankyou ;)

Please slide to see full Answer

Similar questions