Math, asked by subrahmanyam578, 2 months ago

prove that √3+√2 is irrational​

Answers

Answered by vamshi999
1

Answer:

suppose p and q are rationals

√3+√2=p/q

square ing on both sides

we get

5+2√6=p^2/q^2

you can do it I think it's easy

Answered by GeniusAnswer
4

\large\bf\underline\red{Answer \:  :- }

Let us assume √3 + √2 be a rational number.

\sf\implies{ \sqrt{3}  +  \sqrt{2} =  \frac{p}{q}  } \\

\sf{Where \:  p, \:  q \in z,  \: q \neq 0 }

By squaring both sides,

\sf\implies{ ( \sqrt{3} )² = \bigg( \frac{p}{q} \bigg) {}^{2}  }  \\

\sf\implies{3 =  \frac{p {}^{2} }{q {}^{2} } - 2 \times  \sqrt{2}  \times  \frac{p}{q} + 2  } \\  \\ \sf\implies{2 \sqrt{2} \times  \frac{p}{q}   =  \frac{p {}^{2} }{q {}^{2} } - 1 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\implies{2( \sqrt{2}) \frac{p}{q}  =  \frac{p {}^{2} - q {}^{2}  }{q {}^{2} }  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\ \sf\implies{ \sqrt{2}  =  \bigg( \frac{p {}^{2} - q {}^{2}  }{q {}^{2} } \bigg) \bigg( \frac{q}{2p} \bigg) } \:   \:  \\  \\ \sf\implies{ \sqrt{2} =  \frac{p {}^{2} - q {}^{2}  }{2pq }  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\implies{ \sqrt{2}  \: is \: a \: rational \: number} \:  \:  \:  \:  \\  \sf{ \because \:  \frac{p {}^{2}  - q {}^{2} }{2pq}  \: is \: rational.}

But √2 is not a rational number. This leads us to a contradiction.

∴ our assumption that √3 + √2, is be a rational number is wrong.

Hence,

\sf\purple{ \sqrt{3} +  \sqrt{2}   \: is \: a \: irrational \: number.}

Hence Proved

____________________________________

Similar questions
Math, 9 months ago