Math, asked by neha1418, 10 months ago

prove that 3 + 2 root 5 is irrational​

Answers

Answered by Anonymous
3

Step-by-step explanation:

to \: prove \: that

3 + 2 \sqrt{5 }  \: is \: a \: irrational \: number

 \: let \: us \: assume \: that \: 3 + 2 \sqrt{5}  \: is \: a \: rational \: number \:

3 + 2 \sqrt{5}  =  \frac{a}{b}

so \: b \:  = 0

a \: and \: b \: are \: co \: prime \: number

3 + 2 \sqrt{5}  =  \frac{a}{b}

2 \sqrt{5}  =  \frac{a}{b}  - 3

 \sqrt{5}  =  \frac{a - 3b}{2b}

wkt

 \sqrt{5}  \: is \: a \: irrational \: number

hence \: 3 + 2 \sqrt{5}  \: is \: a \: irrational \: number

 \frac{a - 3b}{2b }  \: is \: a \: rational \: number

<b><I><body bgcolor=red><font color=red></b></I>

Similar questions