Math, asked by sujithvijay442, 9 months ago

Prove that 3+2root7 us an irrational number

Answers

Answered by Mihir1001
11
\huge{\underline{\mathfrak{\textcolor{blue}{Answer :}}}}
\huge\boxed{\fcolorbox{red}{pink}{irrational}}
\huge{\underline{\mathrm{\textcolor{red}{Step-by-step \: \: explanation :}}}}

\LARGE{\underline{\mathtt{\textcolor{violet}{Given :-}}}}
⚪ [ 3 + 2√7 ]

\LARGE{\underline{\mathtt{\textcolor{green}{To \: \: prove :-}}}}
3 + 2 \sqrt{7} is an irrational number.

\LARGE{\underline{\mathtt{\textcolor{teal}{Concept \: \: used :-}}}}
⚪ Real numbers
⚪ Irrational numbers

\LARGE{\underline{\mathtt{\textcolor{blue}{Proof :-}}}}
✒ If possible, 3 + 2 \sqrt{7} be a rational number.

let 3 + 2 \sqrt{7} = \Large{ \frac{a}{b} }, where a and b are co-primes and b ≠ 0.

Then,
3 + 2 \sqrt{7} = \Large{ \frac{a}{b} }

On squaring both the sides :

 \Rightarrow { \left(3 + 2 \sqrt{7} \right) }^{2} = \Large{ { \left( \frac{a}{b} \right) }^{2} }

 \Rightarrow 9 + 28 + 12 \sqrt{7} = \Large{ \frac{ {a}^{2} }{ {b}^{2} } }

 \rightarrow 37 + 12 \sqrt{7} = \frac{ {a}^{2} }{ {b}^{2} } \\ \\ \rightarrow \sqrt{7} = \frac{ {a}^{2} - 37 {b}^{2} }{12 {b}^{2} }
Here, a and b are integers.

Therefore,  \sf \: \frac{ {a}^{2} - 37 {b}^{2} }{12 {b}^{2} } \: is \: a \: rational \: number. \\
Thus,  \sf \: \sqrt{7} \: is \: also \: a \: rational \: number.

But, this contradicts the fact that  \sqrt{7} is an irrational number.
This contradiction arises on assuming 3 + 2 \sqrt{7} to be a rational number.
So, our assumption is wrong.
Hence, 3 + 2 \sqrt{7} is an \sf\green{\underline{\blue{irrational \: number}}}.

\LARGE{\underline{\mathtt{\textcolor{magenta}{Conclusion :-}}}}
3 + 2 \sqrt{7} is an \sf\green{\underline{\blue{irrational \: number}}}.

Kindly give thanks to my this answer : <a href="https://brainly.in/question/20136092" alink="green" vlink="red">THANKS</a>
.
.
.
.
.
.
.
\bold{hope………. \: this \: answer \: helps \: you \: the \: best .}
and…… mark this answer as ❤BRAINLIEST❤
and. ….. If you can… .then

Thanks for reading…………………………………………………….. =)
\huge{\fcolorbox{orange}{orange}{brainliest answer}}
Similar questions