Math, asked by mahik2130, 1 month ago

prove that 3√3-7 is an irrational​

Answers

Answered by parshurammalwadkar29
0

Step-by-step explanation:

Given:

3 – 3√7

To Prove:

3 – 3√7 is an irrational number.

Proof: Let us assume, to the contrary , that ( 3 – 3√7 ) is rational.

Then, there exists co-primes a and b ( b ≠ 0 ) such that

But this contradicts the fact that √7 is irrational. So, our assumption is incorrect.

Hence, ( 3 – 3√7 ) is irrational

Answered by ajay8949
1

 \:  \:  \sf{let \:3 \sqrt{3}  - 7 \: be \: a \: rational \: number}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{3 \sqrt{3}  - 7 =  \frac{a}{b} } \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{3 \sqrt{3}  =  \frac{a}{b}  +  \frac{7}{1} } \\

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \sf{ \sqrt{3}  =  \frac{a + 7b}{3b} } \\

  \:  \:  \:  \:  \:  \:  \:  \: \sf{but  \: \sqrt{3} \:  is \: irrational}

 \:  \:  \:  \:  \:  \:  \sf{so \:  \frac{a + 7b}{3b} \:  is \: also \: irrational} \\

 \sf{therefore \: our \: assumption \: is \: wrong}

  \:  \: \sf{so \: 3 \sqrt{3}  - 7 \: is \: irrational \: number}

Similar questions