Math, asked by yubika200421, 1 month ago

Prove that: (3-4sin^2 θ) (sec^2 θ - 4tan^2 θ) = (3 - tan^2 θ) (1 - 4sin^2 θ)​

Answers

Answered by sandy1816
0

(3 - 4 { \sin}^{2}  θ)( \sec ^{2} θ -  4{ \tan}^{2} θ) \\  \\  = (3 - 3  { \sin}^{2} θ -  { \sin}^{2} θ)( \frac{1}{ { \cos}^{2} θ}  -  \frac{4 { \sin}^{2}θ }{  {  \cos}^{2}θ } ) \\  \\  = (3 { \cos}^{2} θ -  { \sin}^{2} θ)( \frac{1 - 4 { \sin}^{2} θ}{ { \cos}^{2}θ } ) \\  \\  = ( \frac{3 { \cos}^{2}θ -  { \sin}^{2} θ }{ { \cos}^{2}θ } )(1 - 4 { \sin}^{2} θ) \\  \\  = (3 -  { \tan}^{2} θ)(1 - 4 { \sin}^{2} θ)

Similar questions