prove that 3-4sin^2theta/cos^2theta =3-tan^2theta.
answer in full step
please it's argent
Answers
Answered by
50
Hola there,
Let theta be 'A'
Given=> 3 - 4sin²A/cos²A = 3 - tan²A
LHS
=> (3 - 4sin²A)/cos²A
=> [3 - 4(1 - cos²A)]/cos²A
=> (3 - 4 + 4cos²A)/cos²A
=> (4cos²A - 1)/cos²A
=> [3cos²A + (cos²A - 1)]/cos²A
=> (3cos²A - sin²A)/cos²A
=> 3cos²A/cos²A - sin²A/cos²A
=> 3 - tan²A
=> RHS
LHS = RHS
Hence Proved
Hope this helps...:)
Let theta be 'A'
Given=> 3 - 4sin²A/cos²A = 3 - tan²A
LHS
=> (3 - 4sin²A)/cos²A
=> [3 - 4(1 - cos²A)]/cos²A
=> (3 - 4 + 4cos²A)/cos²A
=> (4cos²A - 1)/cos²A
=> [3cos²A + (cos²A - 1)]/cos²A
=> (3cos²A - sin²A)/cos²A
=> 3cos²A/cos²A - sin²A/cos²A
=> 3 - tan²A
=> RHS
LHS = RHS
Hence Proved
Hope this helps...:)
jayparkash:
thank you so much for helping me
Answered by
11
Answer:
3 - 4 sin^2 (A)
= 3 - 4 (1 - cos^2 (A))
= 3 - 4 + 4 cos^2 (A)
= 4 cos^2 (A) - 1
= 3 cos^2 (A) + cos^2 (A) - 1
= 3 cos^2 (A) - (1 - cos^2 (A))
= 3 cos^2 (A) - sin^2 (A)
= cos^2 (A) [3 - tan^2 (A)] [Since, sin^2 (A) / cos^2 (A) = tan^2 (A)]
Hence, 3 - 4 sin^2 (A) = cos^2 (A) [3 - tan^2 (A)]
Divide both sides by cos^2 (A).
(3 - 4 sin^2 (A)) ÷ (cos^2 (A)) = 3 - tan^2A [Proved]tep-by-step explanation:
Similar questions