Prove that √(3*5^-3) ÷ 3√(3^-1*5) * 6√(3*5^5) = 3÷5
Answers
Given: { √(3*5^-3) ÷ (∛3^-1 x √5) } * 6th root of ( 3 x 5^6 ) = 3÷5
To find: Prove that LHS = RHS in above problem.
Solution:
- Now, first lets start solving from LHS side, we get :
- LHS : { √(3*5^-3) ÷ (∛3^-1 x √5) } * 6th root of ( 3 x 5^6 )
- Simplify all the powers, we get:
{ (3 x 5^-3) ^1/2 ÷ (3^-1) ^1/3 (5)^1/2 } x (3 x 5^6)^1/6
{ (3)^1/2 x (5^-3) ^1/2 ÷ (3^-1) ^1/3 (5)^1/2 } x (3 x 5^6)^1/6
- Simplifying both the two brackets simultaneously now, we get:
{ (3)^1/2 x (5)^-3/2 ÷ (3) ^-1/3 (5)^1/2 } x ((3)^1/6 x (5)^6/6)
{ (3)^1/2 - (-1/3) x (5)^(-3/2-1/2) } x ((3)^1/6 x (5))
{ (3)^(3+2/6) x (5)^(-4/2) } x ((3)^1/6 x (5))
{ (3)^(5/6) x (5)^(-2) } x ((3)^1/6 x (5))
- Now, combining both the brackets together we get:
{ (3)^(5/6 + 1/6) x (5)^(-2 + 1) }
{ (3)^(6/6) x (5)^(-1) }
{ (3)x (5)^(-1) }
{ (3)x (1/5) }
{ 3/5 } ................... RHS
Answer:
So from the above terms we have proved that LHS = RHS
{ √(3*5^-3) ÷ (∛3^-1 x √5) } * 6th root of ( 3 x 5^6 ) = 3÷5
Hence proved.
Answer:
3/5 is the answer ok ok ol