Math, asked by renuvig1989, 1 month ago

Prove that 3+5√7 is irrational, given that √7is irrational.​

Answers

Answered by Anonymous
3

3√5-7=p/q

{ωнεяε, p คหd q คяε ¡หтεgεяร нคv¡หg หσ cσммσห ƒคcтσяร}.

ωнεяε ,

√5 คหd p+7q/3q

คяε яคт¡σหคł หuмЪεяร. Ъuт тн¡ร cσหтяคd¡cтร тнε ƒคcт тнคт √5 ¡ร ¡яяคт¡σหคł.

тнεяεƒσяε,3√5-7 ¡ร คห ¡яяคт¡σหคł หσ.

꧁Here is your answer꧂

⫷XxMissHeartHacker⫸

Answered by FaizanRubani
0

Answer:

By contradiction method

suppose 3+5√7 be a rational number

3+5√7 =p/q

where p and q are Co primes

5√7=p/q - 3

√7 =1/5(p/q - 3)

since we know√7 is irrational

.°. our contradiction was wrong

3+5√7 is irrational

Similar questions