Math, asked by kartikade007, 3 months ago

prove that √3+√5 is irrational​

Answers

Answered by Anonymous
1

Answer:

Let us assume that \sqrt{3} + \sqrt{5} is an rational no.

                                    such that \sqrt{3} + \sqrt{5} = \frac{p}{q} (p and q are integers)

                                                    \sqrt{5} = \frac{p}{q} - \sqrt{3}

                                                    \sqrt{5}  = \frac{p - \sqrt{3} q}{q}

                                                      5 = (\frac{p - \sqrt{3}q }{q})^{2}                 (squaring both sides)

                                                      5 = \frac{p^{2} + 3q^{ 2} + 2\sqrt{3}pq }{q^{2} }

                                                   5q^{2} = p^{2} + 3q^{ 2} + 2\sqrt{3}pq

                                             2\sqrt{3}pq  =  3q^{2} - p^{2}

                                                \sqrt{3}    = \frac{3q^{2} - p^{2} }{2pq}

∵ p and q are integers ∴   \frac{3q^{2} - p^{2} }{2pq} is a rational no. and   \sqrt{3}  is also a rational no. . But this contradict the fact the that  

Similar questions