Math, asked by s1074sanjana3761, 2 months ago

Prove that 3+√5 is irrational step by step answer plz​

Answers

Answered by burbanojuan91
0

Answer:

número que es irracional no puede expresarse como una fracción a/b , puesto que los decimales continuan infinitos y de forma aleatoria, tal que no existe una relación entre ellas con el que podamos expresarlo como una fracción. ... Por lo tanto, si √5 no es racional

Step-by-step explanation:

Answered by kristyhoney0
2

Answer:

here is your answer mate!

Let 3 - √5 be a rational number 3 - √5 = p/q [ where p and q are integer , q ≠ 0 and q and p are c-prime number ] => √5 = 3 - p/q => √5 = (3q - p)/q We know that number of form p/q is a rational number. So, √5 is also a rational number. But we know that √5 is irrational number. This contradicts our assumption. Therefore, 3 - √5 is an irrational number.

drop some thanks dear.

goodnight ;-)

Similar questions