Math, asked by skmainulhassanraj, 1 year ago

prove that √3 cot 20 × cot 40 × cot 80 = 1

Answers

Answered by MaheswariS
28

Answer:

\sqrt3*cot20*cot40*cot80=1

Step-by-step explanation:

Formula used:

tan(A-B)=\frac{tanA-tanB}{1+tanA\:tanB}

tan(A+B)=\frac{tanA+tanB}{1-tanA\:tanB}

tan3A=\frac{3tanA-tan^3A}{1-3tan^2A}

\sqrt3*cot20*cot40*cot80

=\sqrt3*(\frac{1}{tan20})*(\frac{1}{tan40})*tan10

=\sqrt3*(\frac{1}{tan(30-10)})*(\frac{1}{tan(30+10)})*tan10

=\sqrt3*(\frac{1+tan30\:tan10}{tan30-tan10})*(\frac{1-tan30\:tan10}{tan30+tan10})*tan10

=\sqrt3*(\frac{1^2-tan^230\:tan^210}{tan^230-tan^210})*tan10

=\sqrt3*(\frac{1-(\frac{1}{\sqrt3})^2tan^210}{(\frac{1}{\sqrt3})^2-tan^210})*tan10

=\sqrt3*(\frac{1-(\frac{1}{3})tan^210}{(\frac{1}{3})-tan^210})*tan10

=\sqrt3*(\frac{3-tan^210}{1-3tan^210})*tan10

=\sqrt3*(\frac{3tan10-tan^310}{1-3tan^210})

=\sqrt3*tan3(10)

=\sqrt3*tan30

=\sqrt3*\frac{1}{\sqrt3}

=1

Answered by kuldeepshah
6

Step-by-step explanation:

∗cot20∗cot40∗cot80=1

Step-by-step explanation:

Formula used:

tan(A-B)=\frac{tanA-tanB}{1+tanA\:tanB}tan(A−B)=

1+tanAtanB

tanA−tanB

tan(A+B)=\frac{tanA+tanB}{1-tanA\:tanB}tan(A+B)=

1−tanAtanB

tanA+tanB

tan3A=\frac{3tanA-tan^3A}{1-3tan^2A}tan3A=

1−3tan

2

A

3tanA−tan

3

A

\sqrt3*cot20*cot40*cot80

3

∗cot20∗cot40∗cot80

=\sqrt3*(\frac{1}{tan20})*(\frac{1}{tan40})*tan10=

3

∗(

tan20

1

)∗(

tan40

1

)∗tan10

=\sqrt3*(\frac{1}{tan(30-10)})*(\frac{1}{tan(30+10)})*tan10=

3

∗(

tan(30−10)

1

)∗(

tan(30+10)

1

)∗tan10

=\sqrt3*(\frac{1+tan30\:tan10}{tan30-tan10})*(\frac{1-tan30\:tan10}{tan30+tan10})*tan10=

3

∗(

tan30−tan10

1+tan30tan10

)∗(

tan30+tan10

1−tan30tan10

)∗tan10

=\sqrt3*(\frac{1^2-tan^230\:tan^210}{tan^230-tan^210})*tan10=

3

∗(

tan

2

30−tan

2

10

1

2

−tan

2

30tan

2

10

)∗tan10

=\sqrt3*(\frac{1-(\frac{1}{\sqrt3})^2tan^210}{(\frac{1}{\sqrt3})^2-tan^210})*tan10=

3

∗(

(

3

1

)

2

−tan

2

10

1−(

3

1

)

2

tan

2

10

)∗tan10

=\sqrt3*(\frac{1-(\frac{1}{3})tan^210}{(\frac{1}{3})-tan^210})*tan10=

3

∗(

(

3

1

)−tan

2

10

1−(

3

1

)tan

2

10

)∗tan10

=\sqrt3*(\frac{3-tan^210}{1-3tan^210})*tan10=

3

∗(

1−3tan

2

10

3−tan

2

10

)∗tan10

=\sqrt3*(\frac{3tan10-tan^310}{1-3tan^210})=

3

∗(

1−3tan

2

10

3tan10−tan

3

10

)

=\sqrt3*tan3(10)=

3

∗tan3(10)

=\sqrt3*tan30=

3

∗tan30

=\sqrt3*\frac{1}{\sqrt3}=

3

3

1

=1=1

Similar questions