Prove that 3 is a rational number.
Answers
Answered by
1
Step-by-step explanation:
Proof:- Let us assume to the contrary that √3 is a rational number. where p and q are co-primes and q≠ 0. It means that 3 divides p2 and also 3 divides p because each factor should appear two times for the square to exist.
Attachments:
Answered by
0
Step-by-step explanation:
Proof. Let us assume to the contrary that √3 is a rational number. where p and q are co-primes and q≠ 0. It means that 3 divides p2 and also 3 divides p because each factor should appear two times for the square to exist.
Hope this will help! mark me as brainlist
Similar questions