Prove that √3 is an irrational number.
Answers
Answered by
8
ʟᴇᴛ ᴜꜱ ᴀꜱꜱᴜᴍᴇ ᴛᴏ ᴛʜᴇ ᴄᴏɴᴛʀᴀʀʏ ᴛʜᴀᴛ √3 ɪꜱ ᴀ ʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ.
ɪᴛ ᴄᴀɴ ʙᴇ ᴇxᴘʀᴇꜱꜱᴇᴅ ɪɴ ᴛʜᴇ ꜰᴏʀᴍ ᴏꜰ ᴘ/Q
ᴡʜᴇʀᴇ ᴘ ᴀɴᴅ Q ᴀʀᴇ ᴄᴏ-ᴘʀɪᴍᴇꜱ ᴀɴᴅ Q≠ 0.
⇒ √3 = ᴘ/Q
⇒ 3 = ᴘ2/Q2 (ꜱQᴜᴀʀɪɴɢ ᴏɴ ʙᴏᴛʜ ᴛʜᴇ ꜱɪᴅᴇꜱ)
⇒ 3Q2 = ᴘ2………………………………..(1)
ɪᴛ ᴍᴇᴀɴꜱ ᴛʜᴀᴛ 3 ᴅɪᴠɪᴅᴇꜱ ᴘ2 ᴀɴᴅ ᴀʟꜱᴏ 3 ᴅɪᴠɪᴅᴇꜱ ᴘ ʙᴇᴄᴀᴜꜱᴇ ᴇᴀᴄʜ ꜰᴀᴄᴛᴏʀ ꜱʜᴏᴜʟᴅ ᴀᴘᴘᴇᴀʀ ᴛᴡᴏ ᴛɪᴍᴇꜱ ꜰᴏʀ ᴛʜᴇ ꜱQᴜᴀʀᴇ ᴛᴏ ᴇxɪꜱᴛ.
ꜱᴏ ᴡᴇ ʜᴀᴠᴇ ᴘ = 3ʀ
ᴡʜᴇʀᴇ ʀ ɪꜱ ꜱᴏᴍᴇ ɪɴᴛᴇɢᴇʀ.
⇒ ᴘ2 = 9ʀ2………………………………..(2)
ꜰʀᴏᴍ ᴇQᴜᴀᴛɪᴏɴ (1) ᴀɴᴅ (2)
⇒ 3Q2 = 9ʀ2
⇒ Q2 = 3ʀ2
ᴡʜᴇʀᴇ Q2 ɪꜱ ᴍᴜʟᴛɪᴘʟʏ ᴏꜰ 3 ᴀɴᴅ ᴀʟꜱᴏ Q ɪꜱ ᴍᴜʟᴛɪᴘʟᴇ ᴏꜰ 3.
ᴛʜᴇɴ ᴘ, Q ʜᴀᴠᴇ ᴀ ᴄᴏᴍᴍᴏɴ ꜰᴀᴄᴛᴏʀ ᴏꜰ 3. ᴛʜɪꜱ ʀᴜɴꜱ ᴄᴏɴᴛʀᴀʀʏ ᴛᴏ ᴛʜᴇɪʀ ʙᴇɪɴɢ ᴄᴏ-ᴘʀɪᴍᴇꜱ. ᴄᴏɴꜱᴇQᴜᴇɴᴛʟʏ, ᴘ / Q ɪꜱ ɴᴏᴛ ᴀ ʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ. ᴛʜɪꜱ ᴅᴇᴍᴏɴꜱᴛʀᴀᴛᴇꜱ ᴛʜᴀᴛ √3 ɪꜱ ᴀɴ ɪʀʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ.
Answered by
2
ʟᴇᴛ ᴜꜱ ᴀꜱꜱᴜᴍᴇ ᴛᴏ ᴛʜᴇ ᴄᴏɴᴛʀᴀʀʏ ᴛʜᴀᴛ √3 ɪꜱ ᴀ ʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ.
ɪᴛ ᴄᴀɴ ʙᴇ ᴇxᴘʀᴇꜱꜱᴇᴅ ɪɴ ᴛʜᴇ ꜰᴏʀᴍ ᴏꜰ ᴘ/Q
ᴡʜᴇʀᴇ ᴘ ᴀɴᴅ Q ᴀʀᴇ ᴄᴏ-ᴘʀɪᴍᴇꜱ ᴀɴᴅ Q≠ 0.
⇒ √3 = ᴘ/Q
⇒ 3 = ᴘ2/Q2 (ꜱQᴜᴀʀɪɴɢ ᴏɴ ʙᴏᴛʜ ᴛʜᴇ ꜱɪᴅᴇꜱ)
⇒ 3Q2 = ᴘ2………………………………..(1)
ɪᴛ ᴍᴇᴀɴꜱ ᴛʜᴀᴛ 3 ᴅɪᴠɪᴅᴇꜱ ᴘ2 ᴀɴᴅ ᴀʟꜱᴏ 3 ᴅɪᴠɪᴅᴇꜱ ᴘ ʙᴇᴄᴀᴜꜱᴇ ᴇᴀᴄʜ ꜰᴀᴄᴛᴏʀ ꜱʜᴏᴜʟᴅ ᴀᴘᴘᴇᴀʀ ᴛᴡᴏ ᴛɪᴍᴇꜱ ꜰᴏʀ ᴛʜᴇ ꜱQᴜᴀʀᴇ ᴛᴏ ᴇxɪꜱᴛ.
ꜱᴏ ᴡᴇ ʜᴀᴠᴇ ᴘ = 3ʀ
ᴡʜᴇʀᴇ ʀ ɪꜱ ꜱᴏᴍᴇ ɪɴᴛᴇɢᴇʀ.
⇒ ᴘ2 = 9ʀ2………………………………..(2)
ꜰʀᴏᴍ ᴇQᴜᴀᴛɪᴏɴ (1) ᴀɴᴅ (2)
⇒ 3Q2 = 9ʀ2
⇒ Q2 = 3ʀ2
ᴡʜᴇʀᴇ Q2 ɪꜱ ᴍᴜʟᴛɪᴘʟʏ ᴏꜰ 3 ᴀɴᴅ ᴀʟꜱᴏ Q ɪꜱ ᴍᴜʟᴛɪᴘʟᴇ ᴏꜰ 3.
ᴛʜᴇɴ ᴘ, Q ʜᴀᴠᴇ ᴀ ᴄᴏᴍᴍᴏɴ ꜰᴀᴄᴛᴏʀ ᴏꜰ 3. ᴛʜɪꜱ ʀᴜɴꜱ ᴄᴏɴᴛʀᴀʀʏ ᴛᴏ ᴛʜᴇɪʀ ʙᴇɪɴɢ ᴄᴏ-ᴘʀɪᴍᴇꜱ. ᴄᴏɴꜱᴇQᴜᴇɴᴛʟʏ, ᴘ / Q ɪꜱ ɴᴏᴛ ᴀ ʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ. ᴛʜɪꜱ ᴅᴇᴍᴏɴꜱᴛʀᴀᴛᴇꜱ ᴛʜᴀᴛ √3 ɪꜱ ᴀɴ ɪʀʀᴀᴛɪᴏɴᴀʟ ɴᴜᴍʙᴇʀ.
Similar questions
Hindi,
3 months ago
Accountancy,
3 months ago
English,
6 months ago
History,
6 months ago
Computer Science,
11 months ago
Math,
11 months ago
English,
11 months ago