Math, asked by nehaalhat6459, 10 months ago

Prove that √3 is an irrational number
(Easy method)

Answers

Answered by Chayan12
0

Answer:

do \: not \: take \: it \: hardly \: see \: and \: understand \: this \: its \: easy \\  \\ t.p =  \sqrt{3} is \: an \: irrational \: number \\ it \: can \: be \: solved \: by \: fundamental \: theorem \: of \: arithmetic(f.t.a) \: means \: if \: a \: divides \:  {b}^{2} then \: a \: divides \: b \\ proof =  \\ let \:  \sqrt{3}  \: is \: a \: rational \: number \\ so \:  \sqrt{3}  =  \frac{p}{q} (p \: and \: q \: are \: real \: no. \: \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  q \: is \: not \: equal \: to \: 0) \\ squaring \: both \: sides \\ 3 =  \frac{ {p}^{2} }{ {q}^{2} } (p \: and \: q \: are \: co \: primes) \\  {p}^{2}  = 3 {q}^{2}  \\  {p}^{2} is \: a \: multiple \: of \: 3 \\ if \:  \frac{3}{ {p}^{2} }  \\ then \:  \frac{3}{p} (by \: f.t.a) \\ 3 \: is \: a \: factor \: of \: p \\ p = 3m \\  {(3m)}^{2}  = 3 {q}^{2}  \\ 9 {m}^{2}  = 3 {q}^{2}  \\  {q}^{2}  = 3 {m}^{2}  \\ if \:  \frac{3}{ {q}^{2} }  \\ then \:  \frac{3}{q} (by \: f.t.a) \\ 3 \: is \: a \: factor \: of \: q \\ therefore \: 3 \: is \: common \: factor \: of \: p \: and \: q \\ so \: p \: and \: q \: are \: not \: co \: primes \\ this \: contradicts \: our \: assumption \\ therefore \:  \sqrt{3} \: is \: an \: irrational \: number.  \\  \\  \\ hope \: it \: helps............ \\ plz \: mark \: as \: brainliest................

Similar questions