Math, asked by iamdramaticu, 1 month ago

Prove that √3 is an irrational number. pls show how you slove this question​

Answers

Answered by Ꭺαzαrıαh
109

Solution:-

Attached !

▁▁▁▁▁▁▁▁▁▁▁

More About:-

When the square root of a number is a whole number, this number is called a perfect square. Many square roots are irrational numbers, meaning there is no rational number equivalent.

Attachments:
Answered by GeniusAnswer
10

\large\bf\underline\red{Answer  \: :-}

Let us assume on the contrary √3 is an rational number.

Then, there exist positive integer a and b

such that

\sf{ \sqrt{3}  =  \frac{a}{b} } \\

where, a and b, are co prime i.e. their HCF is 1.

Now,

\sf{ \sqrt{3}  =  \frac{a}{b} } \\

\sf\implies{3 =  \frac{a {}^{2} }{b {}^{2} } } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\implies{3b {}^{2}  = a {}^{2} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \\  \\ \sf\implies{3 \: divides \: a {}^{2} \:  \:  \:  [  \: \because \: 3 \: divides \: 3b {}^{2} \: ] } \\  \\\sf\implies \purple{3 \: divides \: a \:  \:  \: ...(1)}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\  \\\sf\implies{a  = 3c \: for \: some \: integer \: c}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \\\sf\implies{a {}^{2} = 9c {}^{2}  }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \\\sf\implies{3b {}^{2} = 9c {}^{2} \:  \:  \:   }  [  \: \because \: a {}^{2}  \:  =  \: 3b {}^{2} \: ] \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\implies{b {}^{2} = 3c {}^{2}  } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \sf\implies{3 \: divides \: b {}^{2}  \:  \:  \:  [  \: \because \: 3  \:  =  \: 3c {}^{2}  \: ]} \:  \:  \:  \:  \:  \:  \:   \\  \\ \sf\implies \purple{3 \: divides \: b \:  \:  \: ...(2)} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

From (1) and (2), we observe that a and b have at least 3 as common factor. But, this contradicts the fact that a and b are co prime. This means that our assumption is not correct.

Hence, √3 is an irrational number.

________________________________

Similar questions