Math, asked by meenakshi4173, 10 months ago

prove that 3 minus root 2 is an irrational number​

Answers

Answered by Anonymous
6

Solution:

\sf Let\;assume\;that\;3-\sqrt{2}\;is\;rational\;number.\\ \\ \\ \implies \sf 3-\sqrt{2}=\dfrac{a}{b}\;\;\;\;[Where\;a\;and\;b\;are\;integers]\\ \\ \\ \implies \sf \sqrt{2} = 3-\dfrac{a}{b}\\ \\ \\ \sf Since\;a\;and\;b\;are\;integers.\;So,\;3-\dfrac{a}{b}\;is\;rational\;number.\\ \\ \sf But\;as\;we\;know\;that\;\sqrt{2}\;is\;irrational\;number.\\ \\ \sf And,\;Irrational\neq Rational.\\ \\ \sf So,\;our\;assumption\;is\;wrong.\\ \\ \sf 3-\sqrt{2}\;is\;Irrational\;number.\\ \\ \underline{\bf Hence\;Proved!!!}

Answered by Anonymous
15

\huge{\underline{\underline{\bf{\purple{Solution:-}}}}}

\sf Let\;3-\sqrt{2}\;be\;the\;rational\;number.

\bold{Its\: simplest\: form}\large\frac{p}{q}\bold{where\: p\: and\: q\: have\: no\: common\: factor.}\bold{other\: than\: one}

{3}{-}\sqrt{2}\:{=}\:\large\frac{p}{q}

{3}{-}\large\frac{p}{q}\:{=}\:\sqrt{2}

\sqrt{2}\:{=}\:\large\frac{3q-p}{q}

\bold{Since,\: p\: and\: q\: are\: integers\: so}\large\frac{3q-p}{q}\bold{is\: rational}

.•.\sqrt{2}\bold{is\: rational}

\bold{But\: the\: contradiction\: the\: fact\: is\: that}

\sqrt{2}\bold{is\: irrational.}

\bold{ So\: our\: assumption\:is\: wrong.}

\sf Hence\;3-\sqrt{2}\;is\;irrational.

Similar questions