Prove that √3 or √5 is irrational.
Answers
Answered by
2
Step-by-step explanation:
A rational number can be written in the form of p/q where p,q are integers. p,q are integers then (p²+2q²)/2pq is a rational number. Then √5 is also a rational number. ... Therefore, √3+√5 is an irrational number.
I hope that will be help you my friend
Answered by
44
Prove that √3 or √5 is irrational.
GiveN :
- √3 + √5
To Prove :
- Prove that irrational.
Letus assume that 3 + √5 is a rational number.
So it can be written in the form a/b
3 + √5 = a/b
Here a and b are coprime numbers and b ≠ 0
By Solving,
3 + √5 = a/b
we get,
=>√5 = a/b – 3
=>√5 = (a-3b)/b
=>√5 = (a-3b)/b
This shows (a-3b)/b is a rational number.
But we know that √5 is an irrational number, it is contradictsour to our assumption.
Our assumption 3 + √5 is a rational number is incorrect.
3 + √5 is an irrational number
∴Hence, proved!
Similar questions