Prove that:
3 (sin x - cos x)^4 + 4 (sin^6×x + cos^6×x) + 6 (sin x + cos x)^2 = 13.
Answers
Answered by
2
Step-by-step explanation:
Consider 4(sin
6
x+cos
6
x)
=4[(sin
2
x)
3
+(cos
2
x)
3
]
=4[(sin
2
x+cos
2
x)(sin
4
x−sin
2
xcos
2
x+cos
4
x)]
=4[(sin
2
x+cos
2
x)
2
−2sin
2
xcos
2
x−2sin
2
xcos
2
x]
=4[1−3sin
2
xcos
2
x]
=4−12sin
2
xcos
2
x ........(1)
6[sinx+cosx]
2
=6[sin
2
x+cos
2
x+2sinxcosx]
=6[1+2sinxcosx]
=6+12sinxcosx ......(2)
3(sinx−cosx)
4
=3[(sinx−cosx)
2
]
2
=3[sin
2
x+cos
2
x−2sinxcosx]
2
=3[1−2sinxcosx]
2
=3[1−4sinxcosx+4sin
2
xcos
2
x]
=3−12sinxcosx+12sin
2
xcos
2
x .....(3)
Adding (1),(2) and (3) we get
3(sinx−cosx)
4
+4(sin
6
x+cos
6
x)+6[sinx+cosx]
2
=3−12sinxcosx+12sin
2
xcos
2
x+4−12sin
2
xcos
2
x+6+12sinxcosx
=13
Hence proved
I hope help you
Similar questions