Prove that √3÷sin20° - 1÷cos20° = 4
Answers
Answered by
56
you want a proof from LHS to RHS, ...
... LHS
= ( √3 / sin 20° ) - ( 1 / cos 20° )
= 2 [ (√3/2) / sin 20° ] - [ (1/2) / cos 20° ]
= 2 [ ( sin 60° / sin 20° ) - ( cos 60° / cos 20° ) ]
= 2 sin ( 60° - 20° ) / ( sin 20° cos 20° )
= 2 sin ( 2 · 20° ) / ( sin 20° cos 20° )
= 2 ( 2 sin 20° cos 20° ) / ( sin 20° cos 20° )
= 4
= RHS ..................... QED.
... LHS
= ( √3 / sin 20° ) - ( 1 / cos 20° )
= 2 [ (√3/2) / sin 20° ] - [ (1/2) / cos 20° ]
= 2 [ ( sin 60° / sin 20° ) - ( cos 60° / cos 20° ) ]
= 2 sin ( 60° - 20° ) / ( sin 20° cos 20° )
= 2 sin ( 2 · 20° ) / ( sin 20° cos 20° )
= 2 ( 2 sin 20° cos 20° ) / ( sin 20° cos 20° )
= 4
= RHS ..................... QED.
Answered by
30
Hope it will help you.
Thank you
Attachments:
Similar questions