prove that 3¹/² is irrational??
Answers
Answer:
Step-by-step explanation:
Let us assume that √3 is a rational number.
then, as we know a rational number should be in the form of p/q
where p and q are co- prime number.
So,
√3 = p/q { where p and q are co- prime}
√3q = p
Now, by squaring both the side
we get,
(√3q)² = p²
3q² = p² ........ ( i )
So,
if 3 is the factor of p²
then, 3 is also a factor of p ..... ( ii )
=> Let p = 3m { where m is any integer }
squaring both sides
p² = (3m)²
p² = 9m²
putting the value of p² in equation ( i )
3q² = p²
3q² = 9m²
q² = 3m²
So,
if 3 is factor of q²
then, 3 is also factor of q
Since
3 is factor of p & q both
So, our assumption that p & q are co- prime is wrong
hence,. √3 is an irrational number
Answer:
Let √3 be a rational number
√3 = a/b (a and b are integers and co-primes and b ≠ 0)
On squaring both the sides, 3 = a²/b²
⟹ 3b² = a²
⟹ a² is divisible by 3
⟹ a is divisible by 3
We can write a = 3c for some integer c.
⟹ a² = 9c²
⟹ 3b² = 9c²
⟹ b² = 3c²
⟹ b² is divisible by 3
⟹ b is divisible by 3
From (i) and (ii), we get 3 as a factor of ‘a’ and ‘b’ which is contradicting the fact that a and b are co-primes.
Hence our assumption that√3 is an rational number is false.
∴ √3 is an irrational number.