Math, asked by mdsalman2208, 4 months ago

Prove that....................​

Attachments:

Answers

Answered by anindyaadhikari13
4

Required Answer:-

Given to prove:

 \rm \mapsto \sqrt{ {x}^{ - 1}y}  \times  \sqrt{ {y}^{ - 1}z }  \times  \sqrt{ {z}^{ - 1} x}  = 1

Proof:

Taking LHS,

 \rm \sqrt{ {x}^{ - 1}y}  \times  \sqrt{ {y}^{ - 1}z }  \times  \sqrt{ {z}^{ - 1} x}

 \rm =  \sqrt{ {x}^{ - 1}y\times  {y}^{ - 1}z  \times {z}^{ - 1} x}

 \rm =  \sqrt{ \dfrac{ \cancel{y}}{ \cancel{x} }\times  \dfrac{ \cancel{z}}{ \cancel{y}}   \times  \dfrac{ \cancel{x}}{ \cancel{z} }}

 \rm = 1

= RHS (Hence Proved)

Important formula to solve indices questions:

 \rm \mapsto {x}^{a}  \times  {x}^{b}  =  {x}^{a + b}

 \rm \mapsto ({x}^{a})^{b}  =   {x}^{ab}

 \rm \mapsto  \dfrac{ {x}^{a} }{ {x}^{b} }  =  {x}^{a - b}

 \rm \mapsto {x}^{0}  = 1 \:  \: (x \neq 0)

 \rm \mapsto {x}^{y}  =  \dfrac{1}{ {x}^{ - y} }

 \rm \mapsto {x}^{a}  =  {y}^{a}  \implies x = y \:  \: (a \neq 0)

 \rm \mapsto  \sqrt[x]{y}  =  {y}^{ \dfrac{1}{x} }

 \rm \mapsto \dfrac{ {x}^{a} }{ {y}^{a} }  =   \bigg(\dfrac{x}{y}  \bigg)^{a}

Answered by BrainlyKingdom
4

\sf{\sqrt{x^{-1}y}\sqrt{y^{-1}z}\sqrt{z^{-1}x}}

\sf{=\sqrt{x^{-1}xy^{-1}yz^{-1}z}}

\sf{=\sqrt{\dfrac{x}{x}\cdot \dfrac{y}{y}\cdot \dfrac{z}{z}}}

\sf{=\sqrt{1\cdot1\cdot1}}

\sf{=\sqrt{1}}

\sf{=1}

Similar questions