Math, asked by sadhanarsanjanar, 5 months ago

Prove that =32 cos3- 32cos3+6cos

Answers

Answered by lakshmimandi2248
1

Step-by-step explanation:

sin6θ=2sin3θcos3θ

=2(3sinθ−4sin

3

θ)(4cos

3

θ−3cosθ)

=24sinθcos

3

θ−18sinθcosθ−32sin

3

θcos

3

θ+24sin

3

θcosθ

=24sinθcosθ(1−sin

2

θ)−18sinθcosθ−32sinθ(1−cos

2

θ)cos

3

θ+24sin

3

θcosθ

=24sinθcosθ−24sin

3

θcosθ−18sinθcosθ−32sinθcos

3

θ+32cos

5

θsinθ+24sin

3

θcosθ

=32cos

5

θsinθ−32sinθcos

3

θ+6sinθcosθ

=32cos

5

θsinθ−32sinθcos

3

θ+3sin2θ

Therefore x=sin2θ

Similar questions