Math, asked by PragyaTbia, 1 year ago

Prove that 4 cos 12° cos 48° cos 72° = cos 36°.

Answers

Answered by Anonymous
3

Answer:


Step-by-step explanation:

LHS

=4cos12°×cos48°×cos72°

=(2cos48°cos12°)×2cos72°

=[cos(48°+12°)+cos(48°-12°)]×2cos72°  [2cosAcosB=cos(A+B)+cos(A-B)]

=(cos60°+cos36°)×2cos72°

=1/2×2cos72°+2cos72°cos36°

=cos72°+[cos(72°+36°)+cos(72°-36°)]

=cos72°+cos108°+cos36°

=2cos(108°+72°)/2cos(108°-72°)/2+cos36°   [cosC+cosD=2cos(C+D)/2cos(C-D)/2]

=2cos(180°/2)cos(36°/2)+cos36°

=2cos90°cos18°+cos36°

=2×0×cos18°+cos36°

=cos36°=RHS (Proved)


Read more on Brainly.in - https://brainly.in/question/557574#readmore

Answered by sk98764189
2

L.H.S = R.H.S.

Step-by-step explanation:

In the question

Given 4 cos 12° cos 48° cos 72° = cos 36°

Now L.H.S. = 4 cos 12° cos 48° cos 72°

The given expression can be written as:

2 cos 72° [2 cos 12° cos 48°]

= 2 cos 72° [cos(48° + 12°) + cos(48° - 12°)]

{ Since we know that, 2 cos A cos B = cos(A + B) + cos(A - B)}

= 2 cos 72° [cos 60° + cos 36°]

= 2 cos 72° [1/2 + cos 36°]     {∵ cos 60° = 1/2}

=  cos 72° + 2 cos 72° cos 36°

= cos 72° [cos(72° + 36°) + cos(72° - 36°)]

= cos 72° + cos 108° + cos 36°

= 2 cos(108° + 72°)/2 cos(108° - 72°)/2 + cos 36°

{since we know that, cos C + cos D = 2 cos(C + D)/2 cos(C - D)/2}

= 2 cos 180°/2 cos 36°/2 + cos 36°

= 2 cos  90° cos  18° + cos  36°

= 0 + cos  36°    {∵ cos 90° = 0}

= cos  36°

= R.H.S.  Proved

Similar questions