Math, asked by nikitha1104, 1 year ago

prove that 4(cos66+sin84)=√3+√15​

Answers

Answered by niharikaKz
21
answer

step \: by \: step

 \sqrt{3 } \: + \: \sqrt{15}

formula \: \: used

1. \cos(c) + \cos(d)

2 \cos( \frac{c + d}{2}) \: \: \cos( \frac{c - d}{2})

 \cos(36°) \: = \: \sqrt{5} + \frac{1}{4}

4( \cos(66°) + \sin(84°)

4( \cos \: 66° \: + \: \cos \: 6°)

4 \times 2 \cos( \frac{(66° + 6°)}{2} ) \: \: \: \cos( \frac{(66° - 6°)}{2} )

8 \cos(36°) \cos(30°)

8 \times (\frac{ \sqrt{5} + 1 }{4}) \: \times \: (\frac{ \sqrt{3} }{2} )
( \sqrt{5} + 1) \times ( \sqrt{3} )

 = \sqrt{3} + \sqrt{15}
Similar questions