prove that 4 ( sin 24° + cos 6°) =√3+√15
Answers
Answer:
4 ( sin 24° + cos 6°) =√3+√15
Step-by-step explanation:
Prove that 4 ( sin 24° + cos 6°) =√3+√15
sin 24° + sin84°
2Sin( (24 + 84)/2) Cos((84 - 24)/2)
= 2 Sin 54° Cos30°
= 2 Sin 54° (√3 / 2)
= √3 Sin 54°
Sin 54° = Cos36° = 1 - 2Sin²18°
SinA = Sin18°
A = 18°
Therefore, 5A = 90°
⇒ 2A + 3A = 90˚
⇒ 2A= 90˚ - 3A
Taking sin on both sides, we get
sin 2A = sin (90˚ - 3A) = cos 3A as we know , sin(90 - A) = cos A
⇒ 2sinAcos A = 4cos³A - 3 cos A using formulas for sin 2A and cos 3A
⇒ 2sinAcos A - 4cos³A + 3 cos A = 0
⇒ cos A (2 sin A - 4 cos² A + 3) = 0
Dividing both sides by cos A
⇒ 2 Sin A - 4 (1 - sin² A) + 3 = 0
=> 4 sin² A + 2 sin A - 1 = 0, which is a quadratic in sin A
SinA = (-2 ± √(4 + 16) )/(2*4)
=> SinA = (-1 ± √5)/4
as A = 18° => SinA is +ve
=> SinA = (-1 + √5)/4
=> Sin18° = (-1 + √5)/4
Sin 54° = 1 - 2Sin²18°
= 1 - 2 ( (-1 + √5)/4)²
= 1 - (1/8) ( 1 + 5 - 2√5)
= ( 8 - 6 + 2√5)/8
= (2 + 2√5)/8
= ( 1 + √5)/4
4 ( sin 24° + cos 6°) = 4 √3 Sin 54°
= 4 √3 ( 1 + √5)/4
= √3 ( 1 + √5)
= √3 + √15
= RHS
QED
Proved
4 ( sin 24° + cos 6°) =√3+√15
Answer:
LHS=4(sin24°+cos6°)
Let's take (sin24°+cos6°)
(Cos6°=sin84°)
ApplysinC+sinD
Then[(sin24°+cos6°) =root over 15+Root over 3/4
=4(root15+root3/4)=root15+root3
LHS=RHS,hence proved
Step-by-step p explanaion: