prove that:
4 (sin⁴30° + cos⁴ 60°)
- 3 (cos ²45° - sin²90°) = 4.
Attachments:
Answers
Answered by
5
To prove - [ RHS has to be 2 and not 4 ]
4 (sin⁴30° + cos⁴ 60°) - 3 (cos ²45° - sin²90°) = 2
Proof -
This can be done by substituting and simplifying .
We know that -
sin 30 = ½
cos 60 = ½
cos 45 = 1/√2
sin 90 = 1 .
Substituting these values , the LHS simplifies to :
=> 4 [ ½ ]⁴ + 4 [½ ]⁴ - 3 [ 1/√2 ]² + 3 [ 1 ]²
=> 4 [ 1/16 ] + 4 [ 1/16 ] - 3 [ ½ ] + 3
=> ¼ + ¼ - 3 [ ½ ] + 3
=> ½ - 3 [1/2] + 3
=> ½ [ 1 - 3 ] + 3
=> 3 - 1
=> 2 .
Hence Proved
____________________________________
Answered by
174
Step-by-step explanation:
Correct Question :
- 4 (sin⁴30° + cos⁴ 60°) - 3 (cos ²45° - sin²90°) = 2
To Prove :
- 4 (sin⁴30° + cos⁴ 60°) - 3 (cos ²45° - sin²90°) = 2
$olution :
4(SIN⁴30 + COS⁴60) - 3(COS²45 - SIN²90)
= 4[(1/2)⁴ + (1/2)⁴] - 3] - 3[(1/√2)² - (1)² ]
= 4[1/16 + 1/16] - 3(1/2 - 1)
= 4 × 2/16 - 3 × (- 1/2)
= 1/2 + 3/2
= 4/2
= 2
Hence Proved !!
Similar questions