Physics, asked by sianfonseca, 7 months ago

Prove that Ā= (4î – 6ị +8k) and B = (2î + 4ſ + 2k) are mutually perpendicular.

Attachments:

Answers

Answered by Anonymous
21

\underline{\rm\red{Question }}

Prove that \rm \vec{A} = 4\hat{\imath} - 6\hat{\jmath} + 8\hat{k} and \rm \vec{B} = 2\hat{\imath} + 4\hat{\jmath} + 2\hat{k} are mutually perpendicular.

━━━━━━━━━━━━

\underline{\rm\red{Answer }}

\underline{\bf\pink{Given - }}

\rm \vec{A} = 4\hat{\imath} - 6\hat{\jmath} + 8\hat{k}

\rm \vec{B} = 2\hat{\imath} + 4\hat{\jmath} + 2\hat{k}

━━━━━━━━━━━━

\underline{\bf\pink{To\: Prove -}}

\rm \vec{A} and \rm \vec{B} are mutually perpendicular.

━━━━━━━━━━━━

\underline{\rm\red{Solution - }}

When the vectors are perpendicular , the dot product of two vectors is equal to zero.

For two vectors -

\rm \vec A = a_x\hat{\imath} + a_y\hat{\jmath} + a_z\hat{k}

\rm \vec B = b_x\hat{\imath} + b_y\hat{\jmath} + b_z\hat{k}

\boxed{\rm\purple{ \vec A • \vec B = a_xb_x + a_yb_y + a_zb_z}}

━━━━━━━━━━━━

For given vectors -

\rm \vec{A} = 4\hat{\imath} - 6\hat{\jmath} + 8\hat{k}

\rm \vec{B} = 2\hat{\imath} + 4\hat{\jmath} + 2\hat{k}

\rm \vec A • \vec B =  (4 \times 2) + ( - 6 \times 4) + (8 \times 2)

\implies\rm \vec A • \vec B = 8 - 24 + 16

\implies\rm \vec A • \vec B = 24 - 24

\implies\rm \vec A • \vec B = 0

━━━━━━━━━━━━

As the dot product of the given vectors is equal to zero, both the vectors are mutually perpendicular.

Hence Proved.

━━━━━━━━━━━━

Similar questions