Math, asked by esrnonnax, 1 year ago

prove that: 4sin^3a.cos3a + 4cos^3a.sin3a = 3sin4a

Answers

Answered by brunoconti
23

Answer:

Step-by-step explanation:

BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST

Attachments:
Answered by sharonr
11

4sin^3a cos3a + 4cos^3asin3a = 3sin4a

Solution:

Given that, we have to prove:

4sin^3a cos3a + 4cos^3asin3a = 3sin4a

Take the LHS

4sin^3a cos3a + 4cos^3asin3a ---- ( 1)

We know that,

cos\ 3a = 4cos^3a-3cos\ a

sin\ 3a = 3sin\ a -4sin^3a

Apply these in (1)

4sin^3a ( 4cos^3a-3cos\ a) + 4cos^3a(3sin\ a -4sin^3a)

Expand

16sin^3acos^3a - 12sin^3acosa+12cos^3asina - 16cos^3asin^3a\\\\Cancel\\\\- 12sin^3acosa+12cos^3asina\\\\Take\ 12sinacosa\ as\ common\\\\12sin\ a\ cos\ a(cos^2a - sin^2a)\\\\We\ know\ that\ cos^2a - sin^2a = cos2a\\\\Therefore\\\\12sin\ a\ cos\ a\ cos2a\\\\6(2sin\ a\ cos\ a)cos\ 2a\\\\6sin\ 2a\ cos\ 2a\\\\3(2sin2a\ cos\ 2a)\\\\3sin4a

Thus,

LHS = RHS

Thus proved

Learn more about this topic

Prove that sin 4A = 4 sin A × cos 3 A - 4 cos A × sin 3 A

https://brainly.in/question/432356

Prove that  4sin(pie/3-theta)sin(pie/3+theta)=3-4sin^2theta

https://brainly.in/question/11441930

Similar questions