Math, asked by SMARTHERMIONE5957, 1 year ago

Prove that 4sin27 = (5+√5)¹/² - (3- √5)¹/²

Answers

Answered by Deepsbhargav
7
=======================
HERE IS YOUR ANSWER ☞
=======================

we \: know \: that \:  \\  \\  =  > sin(54) = cos(90 - 54) \:  \:  \:  \:  \:  \:  \: ...(since \:  =  > cos(90 -  \alpha ) = sin \alpha ) \\  \\  =  > sin(54) = cos(36) \\  \\  =  > sin54 =  \frac{1}{4} ( \sqrt{5}  + 1) \\  \\  -  -  -  -  -  -  -  -  -  -  -  -  -  \\ we \: know \: that \\  =  >  {sin}^{2}  \alpha  +  {cos}^{2}  \alpha  = 1 \\   =  >  {cos}^{2}  \alpha  = 1 -  {sin}^{2}  \alpha  \\  =  > cos \alpha  =  \sqrt{1 -  {sin}^{2}  \alpha }  \\  -  -  -  -  -  -  -  -  -  -  -  -  -  \\  \\ here \:  =  >  \alpha  = 54 \\  \\  plug \: the \: value \: of \:  =  >  \alpha  = 54 \\  \\ we \: get \\  -  -  -  -  -  -  -  -  -  -  -  -  -  -  \\  \\  =  > cos54 =  \sqrt{1 -  {sin}^{2}54 }  \\  \\  = > cos54 =  \sqrt{1 -  {( \frac{1}{4} (  \sqrt{5 }  +1))  }^{2} }  \\  \\  =  > cos54 =  \sqrt{1 -  \frac{1}{16} (5 + 1 + 2 \sqrt{5} )}  \\  \\  =  > cos54 =  \frac{1}{4} ( \sqrt{16 - 5 - 1 - 2 \sqrt{5} } \:  ) \\  \\  =  > cos54 =  \frac{1}{4}  \sqrt{10 - 2 \sqrt{5} }  \:  \:  \: ......eq _{1}  \\ -  -  -  -  -  -  -  -  -  -  -  -  -  -   \\   \\  =  > cos54 = cos2(27) \\  \\  =  > cos54 = 1 - 2 {sin}^{2} 27 \:  \:  \:  \:  \:  \:  \: \:  \:  (cos2 \alpha  \:  = 1 - 2 {sin}^{2}  \alpha ) \\  \\  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  -  \\  \\ from \: eq _{1} \\  \\  =  > 1 - 2 {sin}^{2} 27 =  \frac{1}{4}  \sqrt{10 - 2 \sqrt{5} }  \\  \\  =  > 2 {sin}^{2} 27 = 1 -  \frac{1}{4}  \sqrt{10 - 2 \sqrt{5} }  \\  \\ multiply \: both \: side \: by \: 8  \:  we \: get \\  \\  =  > 16 {sin}^{2} 27 = 8(1 -  \frac{1}{4}  \sqrt{10 - 2 \sqrt{5} } ) \\  \\   =  >  {(4sin27) }^{2}  = 8 - 2  \sqrt{10 - 2 \sqrt{5} }  \\  \\  =  >  {(4sin27)}^{2}  =   { (\sqrt{(5 +  \sqrt{5} } ) -  \sqrt{(3 -  \sqrt{5} }) })^{2}  \\  \\  = > 4sin27 \:  =  \:  \sqrt{5 +  \sqrt{5} }  -  \sqrt{3 -  \sqrt{5} }  \:  \:  \:  \:  \:  \:  \: ....proved


=====================
HOPE IT WILL HELP YOU ☺☺
=====================

DEVIL_KING ▄︻̷̿┻̿═━一
Similar questions