Prove that 4sin50 degree minus root 3tan50 degree = 1
Answers
Given: The term 4sin50 degree minus root 3tan50 degree = 1
To find: Prove LHS = RHS.
Solution:
- Now we have given: 4sin50° - √3tan50° = 1
- Consider LHS, we have:
4sin50° - √3tan50°
- We can rewrite it as:
4sin50° - √3sin50°/cos50°
( 4sin50.cos50° - √3sin50°) / cos50°
- Now we know the formula:
sin2A = 2sinAcosA
- So applying this, we get:
(2sin100° - √3sin50°) / cos50°
100 can be written as 180 - 80, so:
2{ sin(180°-80°) - √3/2 sin50°} / cos50°
2{ sin80° - cos30° x sin50°}cos50°
2{ sin80° -1/2(2sin50° x cos30°) } cos50°
- Now we know the formula:
2sinA x cosB = sin( A+B) + sin(A - B)
So applying this, we get:
2{ sin80° -1/2( sin80° + sin20°)}/cos50°
2{ 1/2sin80° - 1/2sin20°}/cos50°
( sin80° - sin20°)/cos50°
- Again using the formula:
sinA - sinB = 2cos( A + B)/2.sin(A - B)/2
{2cos( 80+20)/2 x sin(80-20)/2 }/cos50°
2cos50° x sin30°/cos50°
2sin30°
2 x 1/2
1
RHS.
- Hence proved.
Answer:
So we have proved 4sin50° - √3tan50° = 1