Prove that
4sinxsin2xsin4x = sin3x
Answers
Answered by
1
4sinx*sin2x*sin4x=sin3x
LHS= 2(cosx-cos3x)sin4x= sin5x+sin3x-sin7x-sinx=sin3x
So, sin5x-sin7x=sinx
or, -2cos6x*sinx=sinx
so, either sinx=0 or cos6x=-1/2
so, x= n*pi or x=(2n*pi+/- 2*pi/3)
LHS= 2(cosx-cos3x)sin4x= sin5x+sin3x-sin7x-sinx=sin3x
So, sin5x-sin7x=sinx
or, -2cos6x*sinx=sinx
so, either sinx=0 or cos6x=-1/2
so, x= n*pi or x=(2n*pi+/- 2*pi/3)
Similar questions