Math, asked by Anonymous, 5 months ago

prove that → 5!= 120

Answers

Answered by devroy26780
87

\huge\bold\red{Question:⤵}

prove that → 5!= 120 ?

\bold\pink{Required \: Answer:⤵}

★Solution:-

1! = 1

2! = 2X1 = 2

3! = 3X2X1 = 6

4! = 4X3X2X1 = 24

5! = 5X4X3X2X1 = 120

★Hence proved✔️.

\bold\red{★hope \: it \: will \: help \: u..}

Answered by XxItsDivYanShuxX
22

\huge✎\fbox \orange{QUE} \colorbox{blue}{ST} \fbox\green{ION}☟

\Large{\mathbb{\colorbox{black}{\orange{Prove that → 5!= 120.✓}}}}

\huge✍︎\fbox\pink{ÂŇ}\fbox\blue{SW} \fbox\orange{ÊŘ}:

Brother/Sister your correct answer is:-

\bold\red{Answer=5\times4\times3\times2\times1}</p><p></p><h2>To prove this we need to find its Factorial Notation:</h2><p></p><h3>But first let's know what is Factorial Notation.</h3><p></p><p><strong>Factorial</strong> of a number is calculated for any positive integer. It is the product of all the numbers starting from the number itself till 1.</p><p></p><p>[tex]\Large\bold{\mathbb{\colorbox{black}{\blue{Step-by-step Explanation:}}}}

 \bold \pink{1! = 1}

 \bold \orange{2! = 2 \times 1 = 2}

 \bold \purple{3! = 3 \times 2 \times 1 = 6}

 \bold \red{4! = 4 \times 3 \times 2 \times 1 = 24}

 \bold \green{5! = 5 \times 4 \times 3 \times 2 \times 1 = 120}

Hence, it's proved.

\large\bold\red{\overbrace{\underbrace \mathbb\blue{Please \:  Mark \:  As \:  The \:  Brainliest}}}

\Large\bold{\mathbb{\colorbox{black}{\red{If \: It \:Satisfied \:You}}}}

\large\bold\red{\overbrace{\underbrace \mathbb\blue{And \:Please \:give \:Thanks}}}

꧁Hopes so that this will help you,꧂

\Large\bold{Your}\: \orange{In}{di}\green{an}\:\Large\bold{Brother,}

✌︎Thank you✌︎

\large\red{\underbrace{\overbrace\mathbb{\colorbox{aqua}{\colorbox{blue}{\colorbox{purple}{\colorbox{pink}{\colorbox{green}{\colorbox{gold}{\colorbox{silver}{\textit{\purple{\underline{\red{《❀DÎVYĀ᭄ÑSHÛ✿》࿐}}}}}}}}}}}}}}

\large\red{\underbrace{\overbrace\mathbb{\colorbox{aqua}{\colorbox{blue}{\colorbox{purple}{\colorbox{pink}{\colorbox{green}{\colorbox{gold}{\colorbox{silver}{\textit{\purple{\underline{\red{《❀FOLLOW✿》࿐}}}}}}}}}}}}}}

Similar questions