Prove that 5^2n -6n+8 is divisible by 9 for all positive integers n
Answers
Answered by
0
Answer:
Step-by-step explanation:
let P(n):2
n
>n
When n=1,2
1
>1.Hence P(1) is true.
Assume that P(k) is true for any positive integer k,i.e.,
2
k
>k
we shall now prove that P(k+1) is true whenever P(k) is true.
Multiplying both sides of (1) by 2, we get
2.2
k
>2k
i.e., 2
k+1
>2k
k+k>k+1
∴2
k+1
>k+1
Similar questions