Math, asked by seemasharma2782, 10 months ago

prove that 5 - 4 root 3 is an irrational number

Answers

Answered by Malveena
2

Answer:

4-5²√3

4-(5²)√3=a/b

25√3=4/b-4b/b

√3=4/25b-4b/25b

where L.H.S is rational and R.H..S is rational , butit contraditcs that √3 is irrational

∴4-5²√3 is irrational

3.6

5 votes

THANKS

4

Comments Report

shadowsabers03

shadowsabers03 Genius

Assume that 4 - 5√3 is rational.

So that 4 - 5√3 can be written as p/q, where p, q are coprime integers and q ≠ 0.

\frac{p}{q}=4-5\sqrt{3} \\ \\ \\ (\frac{p}{q})^2=(4-5\sqrt{3})^2 \\ \\ \\ \frac{p^2}{q^2}=91-40\sqrt{3} \\ \\ \\ 40\sqrt{3}=91-\frac{p^2}{q^2} \\ \\ \\

Here it contradicts our earlier assumption that 4 - 5√3 is rational.

Because, the RHS, p²/q² subtracted from 91, is rational, where p²/q² = (p/q)² is rational as it is square of a rational number p/q, but while the LHS, 40√3, is irrational.

∴ 4 - 5√3 is irrational.

Hence proved!

Answered by rajbir3333
2

Answer:

This is your answer. Please mark me as the brainlist answer please.

Step-by-step explanation:

To Prove this we can subtract 5-4 result will be 1 and After subtracting a number If it does not get the remainder 0. So, We can consider that 5-4 root 3 is an irrational number.

Mark me as the brainlist answer please and thanks me and follow me.

Similar questions