Math, asked by lovelybadshahqqq444, 6 months ago

prove that√5 is a irrational number​

Answers

Answered by gauripatel99
2

Step-by-step explanation:

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number

Hope it helps...

Plz mark me as brainlist

and plz follow me...

Answered by Rahamathqureshi628
0

Answer:

let us contradictory assume root 5 as a rational number

then if root 5 is a rational number it should be in the form a/b

root5=a/b

Similar questions