Math, asked by MohitGargTG, 8 months ago

Prove that √5 is an irrational number.

Answers

Answered by llxdevilgirlxll
3

Given: √5

We need to prove that √5 is irrational

Proof:

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number☺️

&lt;!DOCTYPE html&gt;</p><p></p><p>&lt;html lang="en"&gt;</p><p></p><p>&lt;head&gt;</p><p></p><p>&lt;title&gt;Bts army bomb&lt;/title&gt;</p><p></p><p>&lt;/head&gt;</p><p></p><p>&lt;body&gt;</p><p></p><p>&lt;div id="container" class="army-bomb-container"&gt;</p><p></p><p>&lt;div id="handle" class="handle"&gt;</p><p></p><p>&lt;div id="army-bomb" class="army-bomb"/&gt;</p><p></p><p>&lt;/div&gt;</p><p></p><p>&lt;style&gt;</p><p></p><p>body {</p><p></p><p>background: linear-gradient(45deg, #FBCCB7, #EFAAC9, #CCB6D9, #A2C8ED);</p><p></p><p>width: 100vh;</p><p></p><p>height: 300px;</p><p></p><p>}</p><p></p><p>.army-bomb-container {</p><p></p><p>position: fixed;</p><p></p><p>left: 50%;</p><p></p><p>top: 50%;</p><p></p><p>transform: translateX(-50%) translateY(-30%);</p><p></p><p>}</p><p></p><p>.handle {</p><p></p><p>position: relative;</p><p></p><p>height: 200px;</p><p></p><p>width: 50px;</p><p></p><p>background-color: black;</p><p></p><p>z-index: 0;</p><p></p><p>}</p><p></p><p>/* top of the army bomb drawn using pseudo elements on the handle (so that it is drawn behind the glowing animation) */</p><p></p><p>.handle:before {</p><p></p><p>position: absolute;</p><p></p><p>left: 132.5%;</p><p></p><p>top: -30%;</p><p></p><p>width: 30px;</p><p></p><p>height: 10px;</p><p></p><p>background-color: black;</p><p></p><p>transform: rotate(45deg);</p><p></p><p>z-index: -1;</p><p></p><p>content: "";</p><p></p><p>}</p><p></p><p>.handle:after {</p><p></p><p>position: absolute;</p><p></p><p>left: 168.5%;</p><p></p><p>top: -31.5%;</p><p></p><p>width: 3px;</p><p></p><p>height: 5px;</p><p></p><p>background-color: red;</p><p></p><p>transform: rotate(45deg);</p><p></p><p>z-index: -1;</p><p></p><p>content: "";</p><p></p><p>}</p><p></p><p>.army-bomb {</p><p></p><p>position: relative;</p><p></p><p>left: 50%;</p><p></p><p>transform: translateX(-50%) translateY(-50%);</p><p></p><p>width: 150px;</p><p></p><p>height: 150px;</p><p></p><p>background-color: white;</p><p></p><p>border-radius: 75px;</p><p></p><p>animation: light-up 3s infinite ease-in-out;</p><p></p><p>}</p><p></p><p>/* BTS logo drawn using pseudo elements of the army bomb */</p><p></p><p>.army-bomb::before {</p><p></p><p>position: absolute;</p><p></p><p>top: 160%;</p><p></p><p>left: 34%;</p><p></p><p>border-bottom: 10px solid white;</p><p></p><p>border-left: 10px solid transparent;</p><p></p><p>border-right: 10px solid transparent;</p><p></p><p>height: 0;</p><p></p><p>width: 15px;</p><p></p><p>transform: rotate(90deg);</p><p></p><p>content: "";</p><p></p><p>}</p><p></p><p>.army-bomb::after {</p><p></p><p>position: absolute;</p><p></p><p>top: 160%;</p><p></p><p>right: 34%;</p><p></p><p>border-bottom: 10px solid white;</p><p></p><p>border-left: 10px solid transparent;</p><p></p><p>border-right: 10px solid transparent;</p><p></p><p>height: 0;</p><p></p><p>width: 15px;</p><p></p><p>transform: rotate(-90deg);</p><p></p><p>content: "";</p><p></p><p>}</p><p></p><p>/* glowing animation */</p><p></p><p>@keyframes light-up {</p><p></p><p>0% { box-shadow: 0px 0px 50px 1px white; }</p><p></p><p>50% { box-shadow: 0px 0px 50px 30px white; }</p><p></p><p>100% { box-shadow: 0px 0px 50px 1px white; }</p><p></p><p>}</p><p></p><p>&lt;/style&gt;</p><p></p><p>&lt;/body&gt;</p><p></p><p>&lt;/html&gt;

Answered by pakalaramalakshmio
1

Step-by-step explanation:

Given: √5

We need to prove that √5 is irrational

Proof:

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number

Hence proved

Thank you

Similar questions