Math, asked by sanjayrock10, 7 months ago

Prove that √5 is irrational.​

Answers

Answered by nandy1010101
1

Step-by-step explanation:

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number

Hence proved

Answered by gvgpraveer
0

Answer:

ANS-

Step-by-step explanation:

TO PROVE A NUMBER IS RATIONAL

IT SHOULD CONTAIN DENOMINATOR

HERE, √5=2.23

SO, IT IS NOT A RATIONAL NUMBER AND IT IS A IRRATIONAL NUMBER

SO PLEASE GIVE ME 5-STAR RATING

Similar questions