English, asked by rohitpal00034, 7 months ago

Prove that √5 is irrational.​

Answers

Answered by avaniaarna
0

Answer:

Given: √5

We need to prove that √5 is irrational

Proof:

Let us assume that √5 is a rational number.

Sp it t can be expressed in the form p/q where p,q are co-prime integers and q≠0

⇒√5=p/q

On squaring both the sides we get,

⇒5=p²/q²

⇒5q²=p² —————–(i)

p²/5= q²

So 5 divides p

p is a multiple of 5

⇒p=5m

⇒p²=25m² ————-(ii)

From equations (i) and (ii), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5

⇒q is a multiple of 5

Hence, p,q have a common factor 5. This contradicts our assumption that they are co-primes. Therefore, p/q is not a rational number

√5 is an irrational number

Answered by Anonymous
0

Answer:

Let

5

be a rational number.

then it must be in form of

q and q

where, q

=0 ( p and q are co-prime)

5 = qp

5 ×q=p

Squaring on both sides,

5q 2 =p --------------(1)p 2

is divisible by 5.

So, p is divisible by 5.

p=5c

Suaring on both sides,

p

2

=25c

2

--------------(2)

Put p

2

in eqn.(1)

5q

2

=25(c)

2

q

2

=5c2

So, q is divisible by 5.

Thus p and q have a common factor of 5.

So, there is a contradiction as per our assumption.

We have assumed p and q are co-prime but here they a common factor of 5.

The above statement contradicts our assumption.

Therefore, root 5 is an irrational number.

Similar questions