prove that √5 is irrational
Answers
Answer:
ʜᴏᴘᴇ ɪᴛ ʜᴇʟᴘs ʏᴏᴜ ғʀɪᴇɴᴅ
Step-by-step explanation:
ʟᴇᴛ ᴜs ᴀssᴜᴍᴇ ᴛʜᴀᴛ √ɪs ʀᴀᴛɪᴏɴᴀʟ. sᴏ, ᴡᴇ ᴄᴀɴ ғɪɴᴅ ɪɴᴛᴇɢᴇʀs ᴘ ᴀɴᴅ ǫ (≠ ) sᴜᴄʜ ᴛʜᴀᴛ √ = .
sᴜᴘᴘᴏsᴇ ᴘ ᴀɴᴅ ǫ ʜᴀᴠᴇ ᴀ ᴄᴏᴍᴍᴏɴ ғᴀᴄᴛᴏʀ ᴏᴛʜᴇʀ ᴛʜᴀɴ .
ᴛʜᴇɴ, ᴡᴇ ᴅɪᴠɪᴅᴇ ʙʏ ᴛʜᴇ ᴄᴏᴍᴍᴏɴ ғᴀᴄᴛᴏʀ ᴛᴏ ɢᴇᴛ √ = , ᴡʜᴇʀᴇ ᴀ ᴀɴᴅ ʙ ᴀʀᴇ ᴄᴏᴘʀɪᴍᴇ.
sᴏ, ʙ√ = ᴀ.
sǫᴜᴀʀɪɴɢ ᴏɴ ʙᴏᴛʜ sɪᴅᴇs, ᴡᴇ ɢᴇᴛ
ʙ = ᴀ
ᴛʜᴇʀᴇғᴏʀᴇ, ᴅɪᴠɪᴅᴇs ᴀ.
ɴᴏᴡ, ʙʏ ᴛʜᴇᴏʀᴇᴍ ᴡʜɪᴄʜ sᴛᴀᴛᴇs ᴛʜᴀᴛ ʟᴇᴛ ᴘ ʙᴇ ᴀ ᴘʀɪᴍᴇ ɴᴜᴍʙᴇʀ. ɪғ ᴘ ᴅɪᴠɪᴅᴇs ᴀ , ᴛʜᴇɴ ᴘ ᴅɪᴠɪᴅᴇs ᴀ, ᴡʜᴇʀᴇ ᴀ ɪs ᴀ ᴘᴏsɪᴛɪᴠᴇ ɪɴᴛᴇɢᴇʀ,
ᴅɪᴠɪᴅᴇs ᴀ.
sᴏ, ᴡᴇ ᴄᴀɴ ᴡʀɪᴛᴇ ᴀ = ᴄ ғᴏʀ sᴏᴍᴇ ɪɴᴛᴇɢᴇʀ ᴄ
sᴜʙsᴛɪᴛᴜᴛɪɴɢ ғᴏʀ ᴀ, ᴡᴇ ɢᴇᴛ ʙ = ᴄ ,ɪ.ᴇ. ʙ = ᴄ .
ᴛʜɪs ᴍᴇᴀɴs ᴛʜᴀᴛ ᴅɪᴠɪᴅᴇs ʙ, ᴀɴᴅ sᴏ ᴅɪᴠɪᴅᴇs ʙ (ᴀɢᴀɪɴ ᴜsɪɴɢ ᴛʜᴇ ᴀʙᴏᴠᴇ ᴛʜᴇᴏʀᴇᴍ ᴡɪᴛʜ ᴘ = ). ᴛʜᴇʀᴇғᴏʀᴇ, ᴀ ᴀɴᴅ ʙ ʜᴀᴠᴇ ᴀᴛ ʟᴇᴀsᴛ ᴀs ᴀ ᴄᴏᴍᴍᴏɴ ғᴀᴄᴛᴏʀ.
ʙᴜᴛ ᴛʜɪs ᴄᴏɴᴛʀᴀᴅɪᴄᴛs ᴛʜᴇ ғᴀᴄᴛ ᴛʜᴀᴛ ᴀ ᴀɴᴅ ʙ ʜᴀᴠᴇ ɴᴏ ᴄᴏᴍᴍᴏɴ ғᴀᴄᴛᴏʀs ᴏᴛʜᴇʀ ᴛʜᴀɴ .
ᴛʜɪs ᴄᴏɴᴛʀᴀᴅɪᴄᴛɪᴏɴ ʜᴀs ᴀʀɪsᴇɴ ʙᴇᴄᴀᴜsᴇ ᴏғ ᴏᴜʀ ɪɴᴄᴏʀʀᴇᴄᴛ ᴀssᴜᴍᴘᴛɪᴏɴ ᴛʜᴀᴛ ɪs ʀᴀᴛɪᴏɴᴀʟ.
sᴏ, ᴡᴇ ᴄᴏɴᴄʟᴜᴅᴇ ᴛʜᴀᴛ √ ɪs ɪʀʀᴀᴛɪᴏɴᴀʟ.
Step-by-step explanation:
Let
5
be a rational number.
then it must be in form of
q
p
where, q
=0 ( p and q are co-prime)
5
=
q
p
5
×q=p
Suaring on both sides,
5q
2
=p
2
--------------(1)
p
2
is divisible by 5.
So, p is divisible by 5.
p=5c
Suaring on both sides,
p
2
=25c
2
--------------(2)
Put p
2
in eqn.(1)
5q
2
=25(c)
2
q
2
=5c
2
So, q is divisible by 5.
.
Thus p and q have a common factor of 5.
So, there is a contradiction as per our assumption.
We have assumed p and q are co-prime but here they a common factor of 5.
The above statement contradicts our assumption.
Therefore,
5
is an irrational number.