Math, asked by selvi25051978, 3 months ago

Prove that √5 is irrational.​

Answers

Answered by sia1234567
1

 \orange{\small\underline\bold{ solution }}

  \pink{\hookrightarrow \: prove  \: \sqrt{5}  \: is \: irrational \: }

 \green{ \mapsto \: if \: we \: have \: to \: prove \: that \:  \sqrt{5}  \: is \: irrational \: } \\  \blue{\leadsto \: we \: have \: to \: suppose \:  \sqrt{5} \: is \: a \: rational \: number \: }

 \color{red}and \: as \: we \: know \:  -    \\ \color{purple}they \: must \: be \: in \: the \: form \: of \:  \frac{p}{q}  \: where \: q  \: should \: not \: be \: equal \: to \: 0 \: (zero)

 \color{purple} \hookrightarrow \: and \: p \: and \: q \: should \: be \: co - prime \: numbers

  \color{plum}\sqrt{5}  =  \frac{p}{q}  \\   \color{pink}\sqrt{5}  \times q = p

Squaring both sides -

 \color{blue} {5 \: q}^{2}  =  {p}^{2}   \:  \:  \:  \: - eq \: \fbox{ \: 1}

  \pink{{p}^{2}  \: is \: divisible \: by \: 5}

 \pink{so \: (p) \: \: is \:divisible \: by \: 5}

 \color{blue}p = 5c

Squaring on both sides -

  \color{blue}{p}^{2}  ={25 \: c}^{2}  \:  \:  \:  - eq\:\fbox{2}

 \green{ \dagger \: putting \:  {p}^{2}  \: in \: equation \:  \fbox{1}}

  \color{blue}{5 \: q}^{2} =  {25(c)}^{2}

 \color{blue} {q}^{2}  =  {5 \: c}^{2}

 \pink{so \: q \: is \: divisible \: is \: 5}

Thus P and Q have common factor of 5

 \color{plum} \circ \: so \: there \: is \: contradiction \:

  \color{red}\longmapsto \: we \: have \: assumed \: p \: and \: q \: are \: co - prime \: but \: here \: they \: are \: common \: factor \: of \: 5

 \blue{ \dagger \: the \: above \: statement \: contradicts \: our \: statement \: }

therefore \:

 \color{purple} \leadsto \: it \: is \: proved \:  \sqrt{5} \: is \: an \: \: irrational \:number \:

________________________________

Similar questions