Math, asked by mkchandra971, 9 months ago

Prove that ,√5 is irrational number​

Answers

Answered by shantiadinai
1

Answer:

√5 is irrational number as it is non-terminating and non-repeating in decimal form

Answered by ForeverSweety26
1

Answer:

hi☺️☺️

___________________________________☺️

Let's prove this by the method of contradiction-

Say, √5 is a rational number.

∴ It can be expressed in the form p/q where p,q are co-prime integers.

⇒√5=p/q

⇒5=p²/q² {Squaring both the sides}

⇒5q²=p² (1)

⇒p² is a multiple of 5. {Euclid's Division Lemma}

⇒p is also a multiple of 5. {Fundamental Theorm of arithmetic}

⇒p=5m

⇒p²=25m² (2)

From equations (1) and (2), we get,

5q²=25m²

⇒q²=5m²

⇒q² is a multiple of 5. {Euclid's Division Lemma}

⇒q is a multiple of 5.{Fundamental Theorm of Arithmetic}

Hence, p,q have a common factor 5. this contradicts that they are co-primes.

Therefore, p/q is not a rational number. This proves that √5 is an irrational number.

For the second query, as we've proved √5 irrational.

Therefore 2-√5 is also irrational because difference of a rational and an irrational number is always an irrational number.

____________________________________☺️

Hope it helps❤️❤️❤️❤️

Similar questions