Math, asked by RHITVIKAYADAV, 9 months ago

Prove that √5 is irrational number​

Answers

Answered by akanshaagrwal23
2

Step-by-step explanation:

Say, √5 is a rational number. ∴ It can be expressed in the form p/q where p,q are co-prime integers. ... Therefore, p/q is not a rational number. This proves that √5 is an irrational number.

Answered by Anonymous
5

 \huge \underline \red{answer}

Let us assume that √5 is a rational number.

we know that the rational numbers are in the form of p/q form where p,q are intezers.

so, √5 = p/q

p = √5q

we know that 'p' is a rational number. so √5 q must be rational since it equals to p

but it doesnt occurs with √5 since its not an intezer

therefore, p =/= √5q

this contradicts the fact that √5 is an irrational number

hence our assumption is wrong and √5 is an irrational number.

Similar questions