Math, asked by nioramn, 2 months ago

prove that √5 is irrational number​

Answers

Answered by mundadanaman30
1

Step-by-step explanation:

I hope you all have undustood it

Attachments:
Answered by Jellyfish143
2

⭐SOLUTION

|solution|  \\  \\ let \: us \: assume \:  \sqrt{5} \: \:   is \: an \: \\  rational \: number \:  \sqrt{5 }  \\ can \: be \: expressed \: in \: the  \\ \: form \: of  \:  \:   \frac{a}{b}  \:  \: where \: a \: \: and \: b \:  are \:   \\ co - prime   \: integers \:  \:. \\  \sqrt{5}  =  \frac{a}{b}  \\ square \: on \: both \: side \\  {5}  =    \frac{ {a}^{2} }{ {b}^{2} }  \\  ( 5 \:  {b}^{2}  =  {a}^{2} )  =  >  |1|  \\  5 \: \:  divides \:  {a}^{2}  \\  =  \: 5 \: divides \: a \\  ( \: by \: using \:  theorm \: 1.3) \\ let \: a \:  = 5m \\ square \: on \: both \: side \\   {a}^{2}  =  {(5m)}^{2}  \\  {a}^{2}  =   {25m}^{2}   = >  |2|  \\ substitute \: eqn \:  |2|  \: in \: eqn \:  |1|  \\  {5b}^{2}  = >   {a}^{2}  \\  {5b}^{2}  =  {25m}^{2}  \\  {b}^{2}  =   \frac{25}{5}  {m}^{2}  \\ b = 5 {m}^{2}  \\ 5 \: divides {b}^{2}  \\ 5 \: divides \: b \\  \\  =  >  \: a \: and\: b \: have \: 5 \: as \: common \:  \\   factor \: and \:  this \: is \: contradiction \: \\  to \:   the \: fact \:   that \: a \: and \: b \: \\  co \:  -  \: prime. \\  \sqrt{5}  \: cannot \: be \: written \:  \\ in \: the \: form \: of \:  \frac{a}{b}  \\  =  > so \:  \sqrt{5 \: }  \: is \: an \: irratioal \\ number..

⭐HOPE THIS HELPS U..

IF IT..HELPS..MARK ME AS BRAINLIEST AND DROP THANKS..⭐

Similar questions