Math, asked by ayushchahar4496, 9 months ago

Prove that: - 5 log 3−log 9=log 27

Answers

Answered by BendingReality
6

Answer:

5 log 3 - log 9 = log 27 [ Proved! ]

Step-by-step explanation:

We have to prove :

5 log 3 - log 9 = log 27

L.H.S. = 5 log 3 - log 9

= > log 3⁵ - log 3²

= > log ( 3⁵ / 3² )

= > log ( 3³ )

= > log 27

L.H.S.  = R.H.S.

Hence proved!

Formula used :

1. log aˣ ⇔ x log a

2. log a = log b = log ( a / b )

Answered by Saby123
3

Solution -

 \sf{  \bold{ To \ Prove \ - }} \sf{ 5 log(3)  -   log(9) = log(27) } \\ \\ \sf{ L.H.S \ - \ 5 log(3)  -   log(9) } \\ \\ \sf{ R.H.S \ = \ log(27) } \\ \\ \sf{  5 log(3)  -   log(9)  } \\  \\  \sf{ =  > 5 log(3)  -  log( {3}^{2} )  } \\  \\  \sf{ =  > 5 log(3)  - 2 log(3) } \\  \\  \sf{ =  > log(3) (5 - 2) } \\  \\  \sf{ =  >3 log(3)  } \\  \\   \sf{  =  > log( {3}^{3} ) } \\  \\  \sf{ =  >  log(27) }   \\  \\ \sf{ \therefore{ L.H.S = R.H.S }} \\ \\ \sf{ \bold{Hence \: Proved}}

Similar questions