Prove that 6+√2 is irrational,
given that √2 is irrational
Answers
Answered by
1
Answer:
what is this
Answered by
3
Step-by-step explanation:
Let us assume that 6 + √2 is a rational number.
So it can be written in the form a/b
6 + √2 = a/b
Here a and b are coprime numbers and b ≠ 0
Solving--
6 + √2 = a/b
we get,
=> √2 = a/b – 6
=> √2 = (a-6b)/b
=> √2 = (a-6b)/b
This shows (a-6b)/b is a rational number.
But we know that √2 is an irrational number, it is contradictsour to our assumption.
Our assumption 6 + √2 is a rational number is incorrect.
6 + √2 is an irrational number
Hence, proved.
If this answer was helpful then please mark it as brainliest
Similar questions