Math, asked by saanviks70, 9 months ago

prove that 6 +√3

is irrational​

Answers

Answered by sakshisingh27
2

<svg width="300" height="300" viewBox="0 0 100 100">\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ <path fill="pink" d="M92.71,7.27L92.71,7.27c-9.71-9.69-25.46-9.69-35.18,0L50,14.79l-7.54-7.52C32.75-2.42,17-2.42,7.29,7.27v0 c-9.71,9.69-9.71,25.41,0,35.1L50,85l42.71-42.63C102.43,32.68,102.43,16.96,92.71,7.27z"></path>\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ <animateTransform \ \textless \ br /\ \textgreater \ attributeName="transform" \ \textless \ br /\ \textgreater \ type="scale" \ \textless \ br /\ \textgreater \ values="1; 1.5; 1.25; 1.5;1.75;1.75 ;1.25; 1;" \ \textless \ br /\ \textgreater \ dur="2s" \ \textless \ br /\ \textgreater \ repeatCount="20"> \ \textless \ br /\ \textgreater \ </animateTransform>\ \textless \ br /\ \textgreater \ \ \textless \ br /\ \textgreater \ </svg>

Hey there,

let 6+√3 be a rational no.

6+√3 = a / b         [where a and b are co prime nos]

√3 = a / b - 6

√3 = a-6b / b

∴ a-6b / b is a rational no

   √3 is also a rational no

our assumption is wrong as contradiction fact says that √3 is not a rational no. 

∴ 6+√3 is an irrational no..

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

===========================

Hope this helped u..

PLZ MARK AS BRAINLIEST..

==================================================================================

Hope this will help you...

✔️❤__________________❤✔️

Similar questions