prove that 6(cos^10 x+ sin^10x) - 15(cos^8x + sin^8x) + 10(cos^6x + sin^6x)=1
Answers
Answered by
1
Answer:
Step-by-step explanation:
BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST BRAINLIEST
Attachments:
Answered by
0
Answer:
Tn=sin^n+cos^n = s^n+c^n
Tn - Tn-2 = s^n+c^n-(s^n-2 - c^n-2)
= s^n - s^n-2 +c^n - c^n-2
= -s^n-2(1-s^2) -c^n-2(1-c^2)
= -s^n-2(c^2) - c^n-2(s^2)
= -c^2s^2(s^n-4 + c^n-4)
Tn - Tn-2 = -c^2s^2(Tn-4) Let c^2s^ = x
= -xTn-4
When n=4
T4 = 1-2x
When n=6
T6 = 1-3x
When n=8
T8 = 2x^2-4x+1
When n=10
T10 = 5x^2-5x+1
Now
=6(sin^10+cos^10) - 15(sin^8+cos^8) +10(sin^6+cos^6) = 6.T10 - 15T8 + 10.T6
=6(5x^2-5x+1) - 15(2x^2-4x+1) + 10(1-3x)
=30x^2-30x+6-30x^2+60x-15+10-30x
=6+10-15
=1.
Similar questions