Prove that 6 divides (a + b + c) if and only if 6 divides (a
^3 + b^3 + c
^3
).
Answers
Answered by
1
Answer:
Step-by-step explanation:
Since n3−n=(n−1)n(n+1) is a product of 3 consecutive integers, 3!∣(n3−n) . Therefore, if a1,…,am∈Z , 6∣(a3i−ai) , i∈{1,…,m} . Hence 6∣((a31+⋯+a3m)−(a1+⋯+am) . So if 6∣(a1+⋯+am) , then 6∣(a31+⋯+a3m) ; and if 6∣(a31+⋯+a3m) , then 6∣(a1+⋯+am) .
We have shown that 6∣(a1+⋯+am)⇔6∣(a31+⋯+a3m) .
Similar questions