Math, asked by papafairy143, 2 days ago

Prove that

(666...n digits)^2+(888...ndigits) = (444...2ndigits)​

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Consider LHS

\rm \: {(666 \cdots \: n \: digits)}^{2} + (888 \cdots \: n \: digits)  \\

Let first evaluate both the terms individually.

So, Consider first term

\rm \: {(666 \cdots \: n \: digits)}^{2} \\

\rm \: =  {[6(111 \cdots \: n \: digits)]}^{2} \\

\rm \: =  {\bigg[\dfrac{6}{9} (999 \cdots \: n \: digits)\bigg]}^{2} \\

\rm \: =  {\bigg[\dfrac{2}{3} ( {10}^{n} - 1) \bigg]}^{2} \\

\rm \:  = \dfrac{4}{9}  {( {10}^{n}  - 1)}^{2}  \\

 \red{\rm\implies \: \boxed{ \rm{ \:{(666 \cdots \: n \: digits)}^{2}  = \dfrac{4}{9}  {( {10}^{n}  - 1)}^{2}} \: }}  \\

Now, Consider second term

\rm \: {(888 \cdots \: n \: digits)} \\

\rm \:  = 8(111 \cdots \: n \: digits) \\

\rm \:  = \dfrac{8}{9} (999\cdots \: n \: digits) \\

\rm \:  = \dfrac{8}{9} ( {10}^{n}  - 1) \\

So,

 \red{\rm\implies \:\boxed{ \rm{ \:(888 \cdots \: n \: digits) = \dfrac{8}{9} ( {10}^{n}  - 1) \: }}} \\

Now, Consider LHS

\rm \: {(666 \cdots \: n \: digits)}^{2} + (888 \cdots \: n \: digits)  \\

On substituting the values of both the terms evaluated above, we get

\rm \:  =  \: \dfrac{4}{9} {( {10}^{n} - 1)}^{2} +   \dfrac{8}{9}( {10}^{n} - 1) \\

\rm \:  =  \: \dfrac{4}{9}( {10}^{n} - 1)\bigg( {( {10}^{n} - 1)} +   2\bigg) \\

\rm \:  =  \: \dfrac{4}{9}( {10}^{n} - 1)\bigg( {{10}^{n} - 1} +   2\bigg) \\

\rm \:  =  \: \dfrac{4}{9}( {10}^{n} - 1)\bigg( {{10}^{n} + 1}\bigg) \\

\rm \:  =  \: \dfrac{4}{9}( {10}^{2n} - 1) \\

\rm \:  =  \: \dfrac{4}{9}(999 \cdots \: 2n \: digits) \\

\rm \:  =  \: 4(111\cdots \: 2n \: digits) \\

\rm \:  =  \: (444\cdots \: 2n \: digits) \\

Hence,

 \red{\rm\implies \:\rm \: {(666 \cdots \: n \: digits)}^{2} + (888 \cdots \: n \: digits)} \\  \\ \rm \:  \:  \:  \red{ =  \: (444 \cdots \: 2n \: digits)} \:  \:  \:  \\

\rule{190pt}{2pt}

Concept Used :-

\rm \: 9 = 10 - 1 \\

\rm \: 99 = 100 - 1 =  {10}^{2} - 1  \\

\rm \: 999 = 1000 - 1 =  {10}^{3} - 1  \\

\rm \: 9999 = 10000 - 1 =  {10}^{4} - 1  \\

.

.

.

.

.

\rm \: (9999 \cdots \: n \: digits) = {10}^{n} - 1  \\

Answered by talpadadilip417
0

Answer:

 \boxed{\underline{\text { Solution : -   }} \:  \:  \:}

Step-by-step explanation:

\begin{aligned}    \text{L.H.S. } & \rm=(666 \ldots \text { upto } n \text { digits })^{2} \\  & \rm+888 \text {...upto } n \text { digits } \\ \\ =& \rm(6+60+600+\ldots \text { upto } n \text { terms })^{2} \\ & \rm+(8+80+800+\ldots \text { upto } n \text { terms }) \\ \\ =&  \rm6^{2}\left\{\frac{10^{n}-1}{10-1}\right\}^{2}+8\left\{\frac{10^{n}-1}{10-1}\right\} \\ \\ =& \rm 36\left(\frac{10^{2 n}-2 \times 10^{n}+1}{81}\right)+\frac{8\left(10^{n}-1\right)}{9} \\ \\ =&  \rm\frac{4\left(10^{2 n}-2 \times 10^{n}+1\right)+8 \times 10^{n}-8}{9} \\ \\ =& \rm \frac{4 \times 10^{2 n}-4}{9}=\frac{4}{9}\left(10^{2 n}-1\right)=\frac{4\left(10^{2 n}-1\right)}{10-1} \\ \\ =& \rm 4+40+400+\ldots \text { upto } 2 n \text { terms } \\ \\\color{orange} =& \color{orange} \rm 4444 \ldots \text {...upto } 2 n \text { digits }=\text { R.H.S. }  \huge _{_{//} }  \end{aligned}

Similar questions